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Hot Electron Relaxation at the Si(100) 2×1 Surface: Linking Density-Functional and Density Matrix 
Theory

Introduction

Matrix elements for Si (001) (2×1)

Theory – linking DFT and DMT
• Implementation of a new approach for the calculation of phonon induced relaxation 

dynamics at semiconductor surfaces
• Two step approach: ground state structure is calculated using density functional theory 

(DFT), dynamical relaxation is implemented using density matrix theory (DMT)
• Parameters of the structure from DFT enter the dynamical equations from DMT via matrix 

elements of the electronic single particle ground state wave functions and band structure
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Relaxation at the Si (001) 2×1 surface
 banddownD bulk bands
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Conclusions
• A new approach has been introduced to calculate the dynamics of ultrafast 

relaxation processes at semiconductor surfaces
• Dynamical (DMT) and non-dynamical methods (DFT) are combined in a two 

step approach to calculate hot electron relaxation
• The example calculations for a Silicon (001) surface show that this method is a 

promising tool for future investigation
• Good agreement to experimental data [1] is obtained, the existence of two 

timescales is reproduced: The short timescale is reproduced by the calculations, 
the long timescale depends on the slab thickness
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• Non-equilibrium population of the conduction band 
states is excited by optical excitation from the valence 
bands via A·p-coupling

• Relaxation dynamics and cooling of hot electrons is 
induced by electron-phonon coupling, considered via 
deformation potentials

Example system: Silicon 2x1 (001) surface
• Symmetric tilted dimer reconstruction of dangling 

bonds
• Ddown-surface band appears below conduction bands 

inside band gap
• Surface band plays a significant role in the 

deexcitation process of silicon (001) [1,2]
• Possible relaxation processes (different timescales:
• Bulk-bulk relaxation from a bulk band to a bulk band
• Bulk-surface relaxation from a bulk band to the 

surface band
• Surface-surface relaxation inside surface band
• Optical excitation from valence band and the 

subsequent relaxation in the conduction bands is 
investigated.

• Dynamical equations are derived from an interaction Hamiltonian based on the second 
quantization with of the ground state problem by introducing electronic (ank

� , ank) and 
phononic (bnk

� , bnk) creation and annihilation operators: 
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• DFT-LDA calculations are performed on a regular k-mesh in the reduced Brillouin zone
• Band structure and matrix elements are determined from the Kohn-Sham-energiesand wave functionsof the DFT 

structure calculations for n bands and the k-points:
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• From Heisenbergs equation of motion for 
operators, dynamical equations are  derived 
for the populations  fnk=�ank

� ank� in second 
order born approximation and using a bath 
and a Markov approximation (� Energy 
conserving scattering):

�
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• Optical excitation is provided as initial conditions to this equation: 

• In the electron-phonon matrix elements, 
both normal (black) and scattering via 
umklapp vector G0 (blueand red) are 
considered

• In the current implementation, the surface 
phonon spectrum and the deformation 
potentials are approximated by one 
acoustical and one optical bulk mode

Band structure calculations

• Band structures and Kohn-Sham-wave 
functions are calculated in the supercell 
approach for various slabs of different 
size

• Band structures of the conduction bands: 
7-layers� Ddown band is seperated from 
the bulk bands, 22 and 40 layers� Ddown 

band dives into bulk bands
• Ddown surface state (at G) is located 

within the first seven layers for all 
slabs� surface features are yet de-
scribed by a 7 layer slab, but not bulk-
surface interaction

7 layers 22 layers 40 layersMatrix element calculations

• Momentum matrix elementsfor optical excitation: linear absorption a(w) for excitat-ion from valence to conduction bands
• Matrix elements calculated from Kohn-Sham-wavefunctions� no quasi-particle effects, no excitonic spectrum
• Spectra for different slabs are in good agreement (top), positions of peaks are still variable (bottom)

• Electron-phonon matrix elements 
for relaxation: matrix elements for 
transitions between in (k) and out 
(k‘) states of the relaxation 

• Top level: intraband scattering inside 
Ddown band and inside lowest bulk 
band (7 layer slab)

• Diagonal: equal in and out states
• Upper left side: umklapp 

processes� low coupling
Extension of big scattering matrix 

elements is widely spread in Ddown

band and narrow in bulk band 
(reflection of band structure)

• Bottom level: interband scattering 1st

bulk band � Ddown band
• Scattering is limited to a narrow 

range and coupling is weaker than in 
intraband

• Umklapp-scattering is relatively 
more important

• Note: for the absolute scattering 
rate, also the deformation potential 
and the phonon energy are 
relevant.

Energy- and k-dependent population

• Optical excitation with a 50-fs laser pulse (gaussian shape) at 
1.69 eV

• DFT-LDA underestimates the band gap energy� scissors 
shift of 0.62 eV, derived from GW calculations [7], is applied 
to the optical excitation frequency

• Supercell phonon mode spectrum is approximated by a two-
bulk mode spectrum with one acoustical and one optical 
branch (acoustical mode: c=6.1 meV/nm, optical mode: 
� w=0.057 eV)

• Currently, deformation potentials are incorporated from 
external data: acoustical mode: 7.37eVnm-1, optical mode 
40eV

• Relaxation is investigated inside the conduction bands 
(including Ddown band), depopulation and hole dynamics of 
the valence bands are neglected

• t=0: initial population after completed optical excitation
• Initially (0 fs), only surface band is populated between X‘ and 

G , peak excitation at 0.55 eV (Ddown  state), highly non-
thermal distribution

• t>20 fs: Ddown  minimum gets populated
• By t=30 fs, a major fraction of the population shifts to bulk
• t=100fs-500fs: bottleneck at 0.1 eV is formed, distribution is 

quasi-thermal in Ddown band bottom and non-thermal at higher 
energy

• By t=200ps, the electrons relax to the  Ddown minimum at G
(equilibrium state)
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Population in real space

• Electron density of  the 
conduction band population at 
several timesteps

• Population is mostly surface-
centered at all timesteps

• Initially: hardly any bulk 
population

• 30fs: significant bulk population
• 1ps: only surface states are 

populated

Relaxation time scales

• Time scale can be extracted from 
the population rate of the Ddown 

minimum
• Two timescales have been 

experimentally observed in the 
relaxation: 1.5 ps and 190ps [1]:

• Short timescale is independent of 
slab thickness

• Long timescale is dependent on 
slab and faster than 
experiment[1]� convergence 
problem?
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